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SUMMARY

A new two-dimensional computer code has been developed to analyze the vis-

cous flow around unconventional airfoils at various Mach numbers and angles of at-

tack. The Navier-Stokes equations are solved using an implicit, upwind, finite-volume

scheme. Both laminar and turbulent flows can be computed. A new nonequilibrium

turbulence closure model was developed for computing turbulent flows. This two-

laver eddy viscosity model was motivated by the success of the Johnson-King model

in separated flow regions. The influence of history effects are described by an ordi-

nary differential equation developed from the turbulent kinetic energy equation. The

performance of the present code has been evaluated by solving the flow around three

airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results

were obtained for both attached and separated flows about the NACA 0012 airfoil.

the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the

comparison of the numerical solutions with the available experimental data, it is con-

cluded that the present code in conjunction with the new nonequillbrium turbulence

model gives excellent results.
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CHAPTER1. INTRODUCTION

In the transonicregime,the viscousflow about airfoils at angleof attack is of-

ten complex. These flows may include a few or all of the following: shock waves,

strong shock wave/boundary layer interactions, separation bubbles and regions of

massive separation !l_. The occurrence of these adverse flow behaviors is strongly

influenced by the airfoil geometry. In recent years, airfoil profiles have been dramat-

ically altered to improve airfoil characteristics :,2,3,4,5,6,7_. These changes include

leading- and trailing-edge flap deflections, blunt trailing edges, laminar flow airfoils

and supercritical-type airfoils. Geometric features promoting adverse flow patterns

are: 1) small leading edge radii. 2) surface and surface slope discontinuities, and

3) nonstandard camber or thickness distributions. In the present work, airfoils with

these geometric features have been referred to as unconventional airfoils. Some typical

unconventional airfoil shapes are depicted in Figure 1.1.

The occurrence of laminar flow around airfoils is an exception. Boundary layers

on aircraft wings are predominantly turbulent. With this in mind, the objective of

the present work is to compute the turbulent flow about unconventional airfoils at

subsonic and transonic Mach numbers. The Navier-Stokes solver developed by Cox

:L8] is used to solve the Reynolds time-averaged equations. It is well known that the

success of a prediction method for turbulent flows depends to a large extent on the
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Figure 1.i: Typical unconventional airfoil shapes
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choice of the turbulence model !91. Although progress has been made towards the

development of a universal turbulence model for use in turbulent flow calculations.

the goal has not been reached yet. In many of the noncomp[ex flows considered in

the past, such as attached wall-bounded flows with zero or mild pressure gradients,

calculations based on simple algebraic turbulence models have been shown to be

within the measurement precision of experiments. The main reason for the success

of an algebraic eddy viscosity model is that most of the basic fluid flows used as test

cases are nearly in a state of self-preservation or of local equilibrium in the sense

that generation of Reynolds stress is in complete balance with its destruction i10_.

Turbulent flows usually take up self-preserving forms if permitted by the boundary

conditions. Near a solid surface in the so called inner layer, the velocity scale of

turbulence depends not only on the shear stress transmitted through the layer to the

surface, but also on the transport of Reynolds stress. In this region, the largest stress

containing eddies have a wavelength of the order of the distance from the surface.

Thus the turbulence length scale in the inner layer may be taken to be proportional

to the distance from the surface. On the other hand, the outer layer is dominated by

large eddies rl0! that have considerably longer life times. As a result, history effects

are much more important in the outer part of a turbulent boundary layer.

It was argued by Bradshaw and Ferriss rll I that the turbulent shear stress -utvt

is closely related to the turbulent kinetic energy and that the latter is governed by

the turbulent kinetic energy equation. The success of the Johnson-King model [12] is

a testimony to the above mentioned findings of Bradshaw and Ferriss. The Johnson-

King model performs quite well in regions of adverse pressure gradients and separation



but it does not always do as well in caseswhere simpler equilibrium (algebraic)

eddy viscosity modelsproduce good results. It may be possible that this model

overemphasizesnonequilibrium effectsin nearequilibrium turbulent flows.

As a result of the aboveobservations,an effort wasundertakento developa new

turbulencemodel from a variation of the turbulent kinetic energyequation i13!. This

two-layermodelis developeddirectly from the availableexperimentalobservationsof

both attachedand separatedflows. An ordinary differential equation, derivedfrom

the turbulent kinetic energy equation, is used to describe the so called history effects

of convection and diffusion of turbulent shear stress. In view of this. the model is not

simply an eddy viscosity model, but also contains the desirable features of a Reynolds

stress model. Although it bears a strong resemblance to the Johnson-King model,

the present nonequilibrium turbulence model is unique. In addition, it is much easier

to incorporate into a Navier-Stokes solver than the Johnson-King model since it does

not involve any iteration.

The performance of the new turbulence model is illustrated through compar-

isons with experimental results for turbulent flows about three different airfoils: the

NACA 0012 airfoil, the RAE 2822 airfoil and the Integrated Technology A 153W

airfoil.



CHAPTER 2. GOVERNING EQUATIONS

Turbulence can be regarded as the time-dependent solution of the Navier-Stokes

equations resulting from all the nonlinear processes. These nonlinear processes include

the instabilities within the equations and the flowfield disturbances. Unfortunately.

the association of very small length scales of the turbulence eddies along with small

time scales prohibit the numerical solution of the complete Navier-Stokes equations

for complex problems on present day computers. Nonetheless, useful results can be

obtained from numerical solutions of intelligently simplified versions of the Navier-

Stokes equations. Currently, the main thrust of engineering calculations are based

on the Reynolds time-averaged equations i14!. These equations can be obtained by

using Favre's mass-weighted averaging as

0O 0

" = 0 (2.:i0--_

0
2.2)

2.3)

where



ui(xi,t) = _i(xi)- uit(xi,t)

h(xi,t ) = h(x i) + ht(zi,t)

T(xi,t )= T(x i - Tt(xi,t )

H(xi,t) = [-I(xi)- H,(xi,t )

p(xi,t) = _(xi) -.- pt(xi,t )

p(x i.t) = _(x i - pt(x i,t)

pui
d i -

g _ ph

and

vii

+lJ
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Oxj
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o_) 2__..oa k)- --!
Ox i 3 U Ox k

O_jt 2__..Oukl ,
Ox i )- 3 _3 0x k J

(2.4)

Oxj
(2.5)



Here _5is the mean density, ffi is the mean velocity in the direction of :ci, E't is the

mean total energy per unit volume, T is the mean temperature./5 is the mean pressure.

is the coefficient of molecular viscosity, A is the coefficient of thermal conductivity

and h is the mean enthalpy per unit mass. It has been tacitly assumed that the

fluctuations in p and A are negligible. In practice, the viscous terms involving the

primed fluctuations are expected to be small and are candidates for being neglected on

the basis of order of magnitude analysis i15i. Closure of the Reynolds time-averaged

equations requires the specification of the turbulent stresses and heat flux terms. As in

most turbulence models, the turbulent stresses are determined from the Boussinessq

approximation

Off i Ofij 2 6. .Ofik ' 2 6ij_k (2.6)
-puitujt = Pt (Oxj Ox i )-3 tJ Ox k 3

where k is the mean turbulent kinetic energy per unit mass; tSk = +puitui t.

The apparent heat flux is related to the turbulent viscosity #t, mean flow vari-

ables, and the turbulent Prandtl number Pr t by

-puitht = Cp Pt O:F
Pr t _z i

(2.7)

Experiments confirm that Pr t (the ratio of the diffusivities for the turbulent transport

of heat and momentum) is a well behaved function across the flow i15!. Generally

Pr t is close to 1 and a value of 0.9 is chosen in this report.

The above equations are nondimensionalized with respect to freestream speed of

sound, density, temperature, coefficient of molecular viscosity and the independent



variablesx i are scaled by a characteristic length (the chord length in this case).

Since a boundary-fitted coordinate system provides a significantly improved and easier

means of implementing the surface boundary conditions, the foregoing equations are

transformed from a Cartesian to a generalized nonorthogonal curvilinear coordinate

system using the transformation

t = t

= rl(x i )

i = ¢(xi)

The resulting governing equations for a two-dimensional flow are written in vector

notation as

where

J

(2.9)



and

= {p.p_.p_=.Et} T

(2.10)

In this study, the ratio of specific heats, _, is taken as 1.4. The coefficient of molecular

viscosity is approximated with Sutherland's law

a3(1 - 198.71°/Toc)

p = a2 _ 198.71Z/Tee
(2.11)

and the Prandtl number Pr is computed from a curve fit of the data of Keenan et al.

i161

Pr(:f) = 0.82 - 0.2937' * 0.178T 2 4- 0.027T 3 - 0.033_ 4 (2.12)
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where

7" = T_ i000 °

This curve is valid in the temperature range:

200 s < T_ < 1500 o



11

CHAPTER 3. TURBULENCE MODEL

Development of a New Turbulence Model for Wall Bounded Shear Flows

The turbulent energy equation for a two-dimensional incompressible mean flow

outside the viscous sublayer is, '17'

.Ok oq[e (__3_) ODs- _.-e= 0 (3.1)

where

and

f¢ ut2 -vt 2 . _t.t2 ( cOui l 2

2 ]

Ds= ( ptv'-_;}vt)p

It is believed that mass-weighted averaging accounts for much of the effects of

compressibility on turbulence for subsonic, transonic and moderately supersonic cases

[18]. Thus equation 3.1 is assumed to hold for compressible turbulent flows when mass

weighted variables are employed. Furthermore. if we define
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r3/2
k', and £- (3.2)

equation 3.1 becomes

, Or . Or Off ODs r 3'/2

u_-v_-alr_y -al Oy -"al L
-0 3.3)

where it has been taken into account that a 1 is a constant 1177. The value of a 1, which

is often referred to as the turbulent structural coefficient, decreases in the presence

of separation 119!. Along a surface where no separation occurs, a 1 is taken as 0.3

while for surfaces with partly separated flow, a 1 is assigned an average value of 0.25

based on the observation that a 1 = 0.2 at separation. The length scale L defined in

equation 3.2 is the dissipation length scale which is assumed to scale with the local

boundary layer thickness in the outer part of the boundary layer, i.e..

L = 0.096 (3.4)

In the outer layer (y > 0.26 approximately), the advection and diffusion terms

in equation 3.3 become important so that the history effects on turbulence cannot be

neglected. It was observed in this study that there is a path in the outer layer along

which the moment of the Reynolds shear stress (yr) is maximum. This location is

found to occur near y = 0.456. Along this path, equation 3.3 can be written as

--- - +a:um \-- ylm+a:ym L -o (3.5)(trnyrn Ox _mrm alYmrrn -_Y m
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It hasbeentacitlv assumedthat the path of maximum gr is parallel to the sur-

face which is almost exact if the boundary layer approximations are used. Here and

in what follows, the subscript "m" denotes values where the value of yr is maximum.

In equation 3.5, I.Ofi/Oy can be interpreted as the square root of the ratio of turbu-

lent shear stress to density that would result if convection and diffusion effects were

negligible. This term is then replaced by (-utvteq) 1/2, which is assumed to be deter-

mined from an equilibrium eddy viscosity model. Owing to its ease in computation.

the Baldwin-Lomax model 120! is chosen here as the required equilibrium model in

the outer layer:

Uto.e = KCcpFwakeZT

where K is the Clauser constant, Ccp is an additional constant and

O
.,_T ll,_ ,r_

Fwake = min{VmaxFFmax'_-u, kYrnaxF dif/ max}

The quantities Ymaz F and Fm, ax are determined from the vorticity function

F(y)=yl='[1-e-Y +/26]

where

(3.6)

(3.7)

and

Off 0_?

Oy Ox
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,)

The Klebanoff intermittency function ; and u_tif are given as

1.- 5.51('kleb y,gma_.F)61

(3.8)

d ") '_ - ( u2 - v2 )minu if = u" - t'-_Fmax (3,9)

The constants appearing m equations 3.6 through 3.9 are

K = 0.0168

Ccp= 1.6

Cwk = 0.25

('kleb = 0.3

For computation of turbulent flows involving the Navier-Stokes equations, the

determination of boundary layer thickness is not straightforward. Following Stock

and Hasse i21], the boundary layer thickness employed here is calculated from the

Baldwin-Lomax vorticity function using

5 = 1.936yrna_: F (3.10)

Consequently, Ckleb has been modified and assigned a value of 0.516. The diffusion

term in equation 3.5 is modelled in a manner similar to that used by Johnson-King

[12! and is given by
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1/2

( c_Ds t Cmodelrm rmaz ymaa (.3.11t
c3y ]m al(0.7_; - ymax) yrn

Here Cmode l is a modelling constant taken to have a value of 0.3. The derivation of

this diffusion term is given in Appendix A. Defining g = (--ff_)m-1/2 equation 3.5

is now rearranged to yield

, I/'2 ]

dg _ a 1 a 1 t"rn Cmodelrrnaz ymax

d:c 2firnL g 2firnLge 2fimym 2i_m(O.T_-Yma,) ymJ

{3.12)

Equation 3.12 can be easily solved if all the terms on the right hand side except

g and ge are determined at the previous streamwise location. The eddy viscosity in

the outer layer is then given by

uto = g2(O_/Oy)m
(3.13)

For convenience, the boundary layer approximation of the strain rate is used.

The kinematic eddy viscosity in the inner layer is given by

= _2D2y2!
uti = ]Fc (3.14)

where _ is the Karman constant (0.4), Fe is a correction applied to introduce non-

equilibrium effects in the inner layer, and D is the damping function defined as i14_

D= [1- e -y/A] (3.15)
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where the damping length constant is given by

W

.4 = 26
ur_>w,_)l'2N

and

N=
[1-ll"8(Pu---L'I(_ )2p"]_e

dp
p -

flexor 3 dx

1/2

In this wall region, it is still assumed that the turbulence length scale is governed

by the local conditions, i.e., li = _y in the fully turbulent region. Since the term 9e 9

can be interpreted as a correction applied to the turbulence velocity scale in the outer

layer, the turbulence velocity scale correction term in the inner layer, denoted by Fc,

is postulated to havethe following form

Fc- ge g (3.16
1 - fl

The details of this term are described in Appendix B.

The eddy viscosity distribution across the entire boundary layer is then

v t = rntn(Uto,Uti) (3.18
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Wake Model

Available experimental information on the turbulent wake of a flat plate suggest

that the wake can be divided into three regions: the near wake, intermediate region,

and the asymptotic far wake [22 I. The near wake occupies a very small region down-

stream of the trailing edge, where the logarithmic layers of the oncoming boundary

layers are destroyed. The intermediate region is characterized by mixing between the

two outer layers and a resulting loss of memory of the body boundary layer. This

region is followed by the asymptotic, small-defect, far wake in which the mean flow

and turbulence reach a state of self preservation.

From an examination of some of the early measurements in the wakes of cylinders.

Schlichting deduced that eddy viscosity ut remains constant across the wake and is

given by

where

u--L = 0.0444 (3.19)
_'e0

oo

Townsend [23] has chosen the vMue in equation 3.19 to be 0.032 which has been

confirmed by Rodi 1241. This modelling constant, derived on the basis of a constant

eddy viscosity model, is not entirely realistic in view of the marked intermittency of

the flow over a large part of the wake. Following the approach used in Ref. 125i, but

also including the intermittency effects, the velocity defect in the far wake can be

written as
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_' = u'of (4) (3.20)

where f is a function of a nondimensionalized wake half-width

_= [161n2 u_-_0]l/2Y-b

Here Wo is the velocity defect at the wake centerline and. b is defined to be the

wake width where the velocity defect decreases to one-half of the maximum. For

intermittencies of the form

1
5=

1 ÷ kl_m

the velocity defect can be written as

tb' : Woe

By defining a parameter

f \ ]/Ce d(
0

f e-(2/Cd(
0

the various wake properties become a function of r.
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'2

_e ) = 4_r2 ( ut x
_'0

-- 61n2(U/o.

(3.21)

(3.22)

ut ut

In the far wake, the intermittency function suggested by Townsend 23] in boundary

layers is

1

4 = 1-2 y,,64( ) (3.24)

['sing this intermhttency, r has a value of 0.96. The asymptotic eddy viscosity then

becomes

ut, a = 0.03hUe0 (3.25)

The near wake eddy viscosity is calculated following the ideas set forth by Brad-

shaw [26), Townsend [271 and Cebeci and Meier !28]. Denoting the wake centerline

by Ywcl, the inner eddy viscosity formula is subdivided into two parts as shown in

Figure 3.1. When Ywcl < Y < Y2, the following formula is used.

,_,1/'2
Util = _ (-utvt)ma_, Yc (3.26)
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Figure 3.1: Near-wake Region

where

_'to ] (z - Zt.e.)Yc = 1:2
n (-utrr)maz lO_ t.e.

which essentially is an assumption that the near wake vanishes at a distance of 10_;

from the trailing edge. When Y2 < Y < Yl"

(3.27)

In the outer region of the flow,

V'to,w = t_to -_ (vtt.e.
e-( x -Xt.e. )/(20£t .e. ) (3.2S)- Uto )

Here, Uto is again given by equation 3.6. It is to be noted that, the magnitude of
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uti 1 may exceed that of Uto,w at large distances from the trailing edge. In order to

prevent this undesirable property, whenever uti 1 exceeds Uto,w, the eddy viscosity is

taken to be Uto,w across the wake.

Finally, this near-wake eddy viscosity is blended smoothly with the asymptotic

far-wake eddy viscosity ut, a to yield the eddy viscosity in the wake.

utw = Ut.a - (_t[nearwak_ - _t,,:z)e-(x-xt'e')/(206t'e') !3.29)

where

ut !nearwake = min { maz( uti l , uti2 ), Uto.w }
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CHAPTER 4. NUMERICAL METHOD

The governing equations, which are a mixed set of hyperbolic-parabolic equations

in time, are solved using the time-dependent approach. One of the advantages of

this approach is that separated flow regions can be computed without any special

treatment. In the present study, the Navier-Stokes Solver developed by Cox i8i is

used to solve the Reynolds time-averaged equations. A brief description of the scheme

is given below.

This code is based on an upwind-biased, finite volume scheme. The governing

equations are written in discrete conservation law form as

[(.... )-n-1 -n Fi-l'2,J - Fi-I/2,J Gi,j+l ,'2 - Gi,j -1,2

Q i,j - Q i,j = Ji,j At - _ + _r 1

- - in--1

where i and j are the indices in the _ and 77 directions, respectively, and n is the

temporal index. The numerical fluxes f" and G are approximations to the true fluxes

at the cell faces. They are computed by a flux-difference splitting analysis based on

Roe's approximate Riemann solver approach [29]. The viscous terms/_ and _" on the

cell faces are computed with central differences.
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First-order Scheme

To compute the inviscid fluxes, an exact solution to an approximate Riemann

problemis utilized. This is achievedby writing the flux differenceat a cell facein a

nonconservativeform. For example,the flux differenceat (i+l/2,j) is written as

1

_Fi-1/2 - Ji--1/2
.ii+ l ,2/xQi.1/2 (4.2)

Here .-i is the flux Jacobian O_':"OQ. Conservation is maintained by Roe averaging the

i and i-.-1 flow variables in the Jacobian matrix (indicated by a tilde). The metrics in

.-i are computed with simple differences at the cell face. The fluxes at the cell faces

can be approximated to first order with:

Fi+1/2 = 2 1/2 - ,
(4.3}

where

Di__l/2=Ri÷ /2

Here R and R-1 are the right and left eigenvector matrices associated with z/' while

A-*- and A- are the diagonal matrices containing the positive and negative eigenvalues

of/b. This approach results in an upwind approximation to the flux at the cell face.

The same approach is used for the calculation of Gi+1I/2
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Second-order TVD Scheme

The first-order scheme is extended to second-order by using an approach similar

to that of Chakravarthy and Osher 30 . For example, the second-order representation

for P is

Fi- 1/2 ]= i- #i-i - Di.i/2-xOi.i/2

l-O[Di--14 2 _'i'-1/2- D'--_'1/2-_(_i-'-1/'2 l

1-° [D-f-_1 .)_(_ i 1,,2- D__,_3/2_Q,i,3/21 (4.4)

where

D = = RA-'-R-1

The accuracy parameter Q can vary from -1 to 1. The second-order flux difference

terms are limited to provide a total variation diminishing (TVD) scheme. Limiting

the various flux difference terms essentially reduces the amount of mass, momentum,

and energy convected through the cell face so that nonphysical numerical oscillations

do not occur in the solution. Numerically, the limiting has the effect of altering the

flux representation whenever a compression or expansion wave is encountered in the

flow. The limiter used here is the MINMOD limiter discussed in Reference [31!,

O( z, y ) = sign( z )rnaz{ O, minii z !,,3ysign( a:)] }

The compression parameter _3 is taken to be the maximum allowable value while
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maintaining the TVD property,

i-_' i -0

,j 2

Expanding a typical flux difference term yields

1[_-_'__1,o_= -- Fi--1 - Di+l /2'xQi-1,/2 - Di-1/2_Qi-1/2
J

1 - _ dF - dF -" '- - dF- (4.5)
+ 2 1,'o 1 '2 2 _-3,2

where

.F: --.i - °[_i ._i_ ]*-i/2 -I/2Ai-I,,'2 i/2' i/2

Implicit Algorithm

r

The linearized nonconservative implicit (LNI) scheme of Yee et al. [32] is used to

enhance the stability of the integration scheme. The scheme is first-order accurate in
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spaceat the n-1 time leveland second-orderaccurateat n. The implicit differencing

is fully upwind: the explicit differencingis upwind biasedfor _' _- 0. Second-order

spatial accuracyis achievedby marching the temporally first-order accuratescheme

in time until steady-stateis reached.By laggingthe Jacobianmatricesto time level

n. the resulting schemeis written as

{I - OJAt _D -n _ D-n
i_-l/2A_ i-1 '2V_

- E 1/211 4- IT n TI, , j-1 2 Re Or/

= -J_t ( _'i+l/"2,j - F'i-1 '2,j - Gi,j-X/2 - Gi4-L/2

. Ioc . - " . . }n
Re Ri+l/2,j -/)i-1 24 - Si,j-1/2 - "_,j-1/2 (4.6)

The parameter O varies the weighting on the first-order spatial terms from fully

explicit (0) to fully implicit (1). The Jacobian matrix N arises from the linearization

of the viscous terms. Here, only the thin-layer terms are handled implicitly. The

equation 4.6 is solved using an approximate factorization approach. The block penta-

diagonal algorithm is replaced with two block tridiagonal inversions, resulting in the

following three-step procedure for each time step.

Step 1: {I 4- ®JAr r D._] 1/2.x _ _ D-n " -*L i-1,/2V( _ } 3Qij

= -JAr { Fi.I, 2.7 - [;'i-l,:2,j -- Gi,j-*-l/2 - Gi,j-i/2

Moc : - _ Ri_l + " " :}n- R----_LRi_l.2, j "2,j Si,j-1/2 - Si,j-1/2
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_ Mo¢ 0 .v" }  QijStep 2: {i -- OJ.Xt rEj-nl,,2..X q _-E;__I,2V q Re 077

= 6Qij

Step 3: 0,_'-' : Q,_ -'- '_6Q,,

The parameter \ is an under-relaxation factor. This is needed since the residual has

a tendency to enter limit cycles in regions with large gradients because of the discrete

switching of the limiter. While k -_ 0.9 has negligible effect on the convergence of the

solution, it prevents the limiter from settling into stable oscillation cycles.

Convergence to steady-state is accelerated by using a local time-stepping ap-

proach. The local time step is

v_l-(7- 1)M 2 2

The value of n varies from 0, for a constant time step, to 1, for a constant local

Courant number. A value of approximately 5 is typical for 5 when n is equal to 1.

Values of order 102 are used when n is equal to 1/2. For high Reynolds number

turbulent flow calculations, a value of one-half was found to provide the best result.

An additional feature of the numerical method includes an implicit treatment of

boundary conditions. The appropriate number of boundary conditions to be speci-

fied at the farfield boundary is determined based on a localized characteristic theory.

The farfield velocity direction is estimated by adding velocity perturbations to the

free-stream velocity. Furthermore, nonuniform free-stream initial conditions are in-
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corporatedto improve the startup convergencecharacteristicsof the code.

Computational Grid

A C-grid is employedfor the presentairfoil calculations. To accountfor blunt

trailing edges,a wakecut is placedat the mid point of the aft surfaceand extended

downstream. A typical numerical grid is displayedin Figure 4.1. The resulting

computationaldomain is depictedin Figure 4.2. A representativegrid for the present

calculationshad a dimensionof 232x 98grid points. All grids wereobtained with the

elliptic grid generatorGRAPE _33!.Sincethe GRAPE codedoesnot patch a grid in

the trailing edgeregionof a finite-thicknesstrailing edge,the codewasmodified to

automaticallygrid this region. To makeefficientuseof the[argenumberof grid points

in the 77-directionat the downstreamboundary,thegrid generatedwith GRAPE was

replacedwith an algebraicgrid downstreamof the trailing edge. The grid is tightly

packedin the r1 -direction at the airfoil surface so that y-'- was less than 0..5 at the

first point above the surface. In most of the calculations, the farfield boundary was

placed approximately 15 chords from the airfoil surface.
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Figure 4.1: Representative grid for a blunt trailing edge airfoil



3O

!!!!!!!!!!!!! !!!!
i!!!!!!!!iiii i!!!

::::::::::::: llll

!!!!_:::;:::: I111
II1::::::;::: ---

II1:::::::::: ,|::[

iiiiii!!iiiii iii!

!iiiiii!!i!!! !!!i
iiiiJiiiiiiii ii!i
_:::::::: llii
::::::::::''"

I1::::::::

I:::::::::

::::::::::

Far-Field Boundary

iii!
iiii

iiii

:::: i!!!

iiii  [ii
!!!! i!!!

Airfoil Surface

Trailing-Edge / _--

Wake Overlap

Figure 4.2: Computational domain for a blunt trailing edge airfoil



31

CHAPTER 5. RESULTS AND DISCUSSIONS

In order to validate the new turbulence model developed in this study, the flow-

fields surrounding three airfoils: the NAC'A 0012 airfoil, the RAE 2822 airfoil and

the Integrated Technology A 153W airfoil have been computed. No adjustments were

made to the turbulence model for these different test cases.

Since the calculations were done for a truly two-dimensional flow. an angle of

attack correction was applied to the experimental or geometric angles of attack to

account for wind-tunnel wall interference. As these corrections are difficult to predict

and somewhat arbitrary, the procedure followed here was to select angles of attack

recommended by the experimenter. The interference effects of the wind-tunnel walls

on the flee-stream Mach number were not considered although in some cases these

corrections may have been significant.

NACA 0012 Airfoil

The NACA 0012 airfoil geometry used in this study includes a blunt trailing-

edge. The airfoil has a thickness to chord ratio of 0.12 (located at 30% of chord)

and a leading-edge radius of 1.58_ of chord. The trailing-edge thickness is 2.1%

of the maximum thickness. For this case, calculations were carried out at a single

Reynolds number of 9 x 106 and at experimental angles of attack of 1.86 ° and 2.86 c.
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The correspondingcorrectedanglesof attack, asrecommendedby Harris ;34, were

taken to be 1.49_ and 2.26c_respectively.For both the cases,the flow wasforced to

transition at 5%of chord. Resultsof the computationsaresummarizedin Table 5.1

which consistsof a tabulation of computedlift and drag coefficientscomparedwith

the corresponding experimental values.

Figure 5.1 shows experimental and computed pressure distributions at a Mach

number of 0.7. with experimental and computational angles of attack at 1.86 o and

1.49 ° , respectively. In this case there is no separation and the computed and experi-

mental pressure distributions !34] are in close agreement with each other. Although no

evidence of a shock wave is seen in the experimental data, a weak shock wave appears

in the numerical solution near the chordwise location of x/'c = 0.15. This difference

may be attributed to the uncertainties in the true angle of attack and free-stream

Mach number. The predicted lift, drag and moment coefficients are 0.233, 0.0084 and

0.0046, respectively, while the corresponding experimental values are 0.241, 0.0079

and -0.005.

A more difficult test case with a large separation corresponding to a Mach num-

ber of 0.799 and experimental and computational angles of attack of 2.86 c and 2.265,

respectively, is shown in Figure 5.2. The shock location predicted by the present

nonequilibrium turbulence model agrees closely with the experimental location. More-

over, the correct pressure plateau behind the shock wave is captured. The pressure

distribution on the lower surface is slightly underpredicted. The predicted lift, drag

and moment coefficients are 0.353, 0.0368 and -0.008, respectively, which compare fa-

vorably with the experimental values of 0.39, 0.0331 and -0.017. Figure 5.3 shows the
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Table 5.1: Experimental and Computed Force Coefficients of NACA 0012 Airfoil

[ Computation

.lIoc Re× 10 -6 ] a C I C d

0.700 9.0 }1.49 0.233 0.0084
0.799 9.0 !2.26 0.353 0.0368

Experiment

a c I c d ,

1.86 0.241 0.0079 i

2.86 0.390 0.0331 _

skin-friction coefficient on the upper surface. No experimental skin-friction data were

available to compare with the computed results. The purpose for the presentation of

Figure 5.3 is to exhibit the existence of a large separation region behind the shock

wave followed by reattachment. The performance of the present turbulence model

is compared with those of Johnson-King and Baldwin-Lomax models in Figure 5.4.

On the lower surface, the Baldwin-Lomax model yields the best results whereas the

Johnson-King model performs best near the shock. Overall, the present model is seen

to provide an improvement over the Baldwin-Lomax and the Johnson-King models.

A basic difficulty encountered while calculating this flow was the presence of large

amplitude unsteadiness in the solution. This behavior has also been observed bv

several other investigators 19!.

The shock capturing capability of the TVD scheme is apparent in the pressure

contour plot of Figure 5.5. The shock is slightly oblique to the surface of the airfoil

because of the rapid growth of the boundary layer. The Mach number contours and

location of the sonic line for this case is displayed in Figure 5.6.

RAE 2822 Airfoil

The second airfoil analyzed was the supercritical airfoil RAE 2822 which has been

tested extensively by Cook et al. 135]. The airfoil has a maximum thickness of 12.1%
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Figure 5.1: NACA 0012: surface-pressure coefficient at Moc = 0.7. Re = 9.0 × 106.

acomp = 1.49 c,, aezp = 1.86 °



35

1.20

o,

0.80

0.40

0.00

-0.40

®®

-- PRESENT

® EXPERIMENT

-0.80

-1.20 I I I I I I I ! I I

0.00 0.20 0.40 0.60 0.80 1.00

X/C

Figure 5.2: NACA 0012: surface-pressure coef_cient at .'_lzc = 0.799. Re = 9.0 ×
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Figure 5.4: NACA 0012: effects of turbulence models on surface-pressure coefficient

at Moc = 0.799, Re = 9.0 _ 106 , acomp = 2.26 °, aexp = 2.86 c
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Figure 5.5: NACA 0012: pressure contours at Moo = 0.799. Re = 9.0 × 106 •

acornp = 2-26°, aexp = 2.86 °
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Figure 5.6: NACA 0012: Mach number contours at ),Io_ = 0.799, Re = 9.0 × 106,

acomp = 2.26 ° . aexp = 2.86 °
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of chord and a leading-edgeradius of 0.827"_of chord. Calculations were performed

for two cases with different Reynolds numbers. Mach numbers and angles of attack.

For both sets of freestream conditions, transition was fixed at 3% of chord. Correc-

tions were applied to the angle of attack to account for the tunnel-wall interference

effects. Results of the computations are summarized in Table 5.2 which consists of

a tabulation of computed lift and drag coefficients compared with the corresponding

experimental values.

Figure 5.7 shows experimental and computed pressure distributions at a Mach

number of 0.73. a Reynolds number of 6.5 x 106 and at experimental and com-

putational angles of attack of 3.19: and 2.80 _. respectively. In this case there is no

separation and the computed and experimental pressure distributions i36! are in close

agreement with each other. A shock wave is predicted near x/c = 0..54 and is in ex-

cellent agreement with the experimental result. On the lower surface, the pressure is

slightly overpredicted in the midsection and near the trailing-edge. The effects of dif-

ferent turbulence models on surface pressure distribution are displayed in Figure 5.8.

The results corresponding to the Bladwin-Lomax and the Johnson-King models were

taken from Reference i36i. It is seen that the present nonequilibrium turbulence model

behaves more like the algebraic Baldwin-Lomax model. Larger differences between

model predictions and experiment are indicated by the skin-friction (Figure .5.9) and

displacement thickness (Figure 5.10) distributions. The present model seems to give

the best overall agreement in skin-friction. Referring to Figure 5.9. it is apparent

that the Baldwin-Lomax model predicts weak separation at the shock wave and the

trailing-edge, whereas the Johnson-King and the present model predict no separa-
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Table 5.2: Experimentaland ComputedForceCoefficientsof RAE 2822Airfoil

; Computation
Moc Re × 10 -6 c_ C l C d

0.730 6.5 12.80 0.820 0.0167

0.750 6.2 [2.80 0.759 0.0246

Experiment

c_ C l ('d
3.19 0.803 0.0168

3.19 0.743 0.0242

tion. With regard to the displacement thickness distributions, all the models shown

give similar results except near the trailing-edge where the Johnson-King model gives

a better prediction. The predicted lift and drag coefficients are 0.82, 0.0167, re-

spectively, while the corresponding experimental values are 0.803 and 0.0168. The

pressure contour plot for this case is displayed in Figure 5.11. Figure 5.12 shows the

Mach number contours and the location of the sonic line.

The next RAE case computed involves separation and corresponds to a Math

number of 0.75, a Reynolds number of 6.2 x 106 and experimental and computational

angles of attack of 3.19 c and 2.80 _, respectively. The surface-pressure coefficient

distribution is shown in Figure 5.13. The effect of turbulence model on surface-

pressure coefficient is displayed in Figure 5.14. The shock location predicted by

the present nonequilibrium turbulence model agrees closely with the experimental

location. However, the shock strength is slightly overpredicted and the pressure

distribution downstream of the shock wave indicates too much pressure recovery.

A similar trend of too much pressure recovery is also observed with the Johnson-

King and the Baldwin-Lomax models (Figure 5.14). Figures 5.15 and 5.16 show the

skin-friction and displacement thickness distributions. The flow immediately after

the shock separates for a small distance and then reattaches. Both the present model

and the Johnson-King model yield close agreement with the experimental skin-friction
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Figure 5.7: RAE 2822: surface-pressure coefficient at Moc = 0.73, Re = 6.5 _ 106,

etcomp = 2.80 °, O_ezp = 3.19 °
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Figure 5.8: RAE 2822: effects of turbulence models on surface-pressure coefficient

at Mo¢ = 0.73, Re = 6.5 × 106, C_comp = 2.80 °, aexp = 3.19 o
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Figure 5.10: RAE 2822: displacement thickness at Moc = 0.73, Re = 6.5 x 106 ,

acomp = 2.80 c, C_ezp = 3-19 °
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Figure 5.11: RAE 2822: pressure contours at 3lot = 0.73, Re = 6.5 × 106 . acomp =

2.80 ° , C_ezp = 3.19 c
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Figure 5.12: RAE 2822: Mach number contours at Moc = 0.73, Re = 6.5 x 106 ,

acomp = 2.80 c, C_exp = 3.19 o
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Figure 5.13: RAE 2822: surface-pressure coefficient at Moo = 0.75, Re = 6.2 x 106 .

acomp = 2.80 °, aezp = 3.19':
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Figure 5.14: RAE 2822: effects of turbulence models on surface-pressure coemcient
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Figure 5.15: RAE 2822: skin-friction coefficient at M_c = 0.75, Re = 6.2 _ 106,

acomp = 2.80 °, aezp = 3.19 _

0.0240

0.0120

0.0000

m_m

#PI
w

I I

0.00 0.20

®

PRESENT

J-K "_

B-L •

EXPERIMENT ii/,
f ' Zs I

, _ _ n_- - -''S
I I I I I I I I

0.40 0.60 0.80 1.00

X/C

Figure 5.16: RAE 2822: displacement thickness at Mx_ = 0.75, Re = 6.2 ,< 106,
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and displacement thickness data. The predicted lift and drag coefficients are 0.759

and 0.0246, respectively, which are in excellent agreement with the corresponding

experimental values of 0.743 and 0.0242. Solution unsteadiness was also observed in

this case as reported previously in References 19 and [13_..

The pressure contour plot for this case is displayed in Figure 5.17. The shock

is again observed to be slightly oblique to the surface of the airfoil because of the

rapid growth of the boundary layer due to separation. Figure 5.18 shows the Mach

number contours and the location of the sonic line. The effect of grid refinement on

the surface-pressure coefficient is shown in Figure 5.19.

Integrated Technology Airfoil

A family of high speed airfoils with reduced detection characteristics were de-

veloped by the Boeing Aerospace Company and tested at NASA Langley Research

('enter 14'.. The development of these airfoils involved the integration of several tech-

nologies. As a result, these are referred to as the Integrated Technology airfoils. These

airfoils have a characteristic thin leading-edge region, a thick belly-type midsection

and a thin trailing-edge region with reflex curvature. Computational results of flows

around one of these airfoils, A 153W (see Figure 5.20) will be presented here and

compared with the experimental results i41. This particular airfoil was designed for a

Mach number of 0.65 and a lift coefficient range of 0.1 to 1.0 at a Reynolds number

of three million. It has a maximum thickness of 15.8% of chord ( at 43.8% of chord),

a leading-edge radius of 0.868% of chord and a trailing-edge thickness of 5.2% of

maximum thickness.
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Figure 5.17: RAE 2822: pressure contours at Moe = 0.75, Re = 6.2 x 106 , acornp =

2.80 ° , aeaep = 3.19 c
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Figure 5.18: RAE 2822: Mach number contoursat 3Ix_ = 0.75, Re = 6.2 x 106,

acomp = 2.80:, c_e;rp = 3.19
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Figure 5.19: RAE 2822: effect of grid at 3Iec = 0.75, Re = 6.2 _ 106. acomp =
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The Langley 6- by 2S-inch blowdown transonic tunnel was used to test airfoil A

153W. The airfoil model had a four inch chord and an aspect ratio of 1.50. A total

pressure wake survey probe located 2.T5 chords downstream from the trailing-edge

was used for the calculation of ('d" Surface pressures were integrated to obtain Cn.

The flow was tripped on both the upper and the lower surfaces at 6% of chord. The

experimental angle of attack mentioned in Reference [4! included corrections for lift

interference.

Results from two flow configurations, one subcritical and the other supercritical.

are presented here and summarized in Table 5.3. The numerical grid contained 221 :_,

g2 grid cells. Twenty-five of the cells in the r1 direction were packed in one-half of the

blunt trailing-edge region.

The first Integrated Technology airfoil calculation corresponds to a Math number

of 0.602, experimental and computational angles of attack of 0.82 c and a Reynolds

number of 6 x 106. Figure 5.21 shows the comparison between the computational and

experimental surface-pressure coefficients. Excellent agreement between the pressure

coefficients is observed. The predicted lift, drag and pitching moment coefficients are

0.3986, 0.00973 and -0.0737, respectively, which compare well with the corresponding

experimental values of 0.3651, 0.0096 and -0.0619. In this case, there is no separation

and no supersonic regions. The pressure contour plot is shown in Figure 5.22.

The second Integrated Technology airfoil calculation corresponds to a Mach num-

ber of 0.725, experimental and computational angles of attack of 1.65 o and a Reynolds

number of 3 × 106. There was a large separation region on the upper surface and

the numerical solution indicated large amplitude unsteadiness. The flow on the up-
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Figure 5.20: Integrated Technology airfoil A 153W grid



56

1.20

Q..

o,

0.80

0.40

0.00

-0.40 ----- PRESENT

_) EXPERIMENT

-0.80

-1.20 ! I I I ! I I I I i

0.00 0.20 0.40 0.60 0.80 1.00

X/C

Figure 5.21: Integrated Technology A 153W: surface-pressure coefficient at
Moc = 0.602. Re = 6.0 × 106, C,comp = 0.82 ° , c_exp = 0-82 _
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Figure 5.22: Integrated Technology ._, 153W: pressure contours at Mo¢ = 0.602,

Re = 6.0 × 106, acornp = 0.82 c', aezp = 0.82 °
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Table 5.3: Experimental and ComputedForceCoefficientsof A 153WAirfoil

Computation
1

Moc Re x 10 -6 a ('l Cd

0.602 6.0 0.82 0.3986 0.0097

0.725 3.0 !1.65 0.4394 0.0176
L

Experiment

c_ C l C d
0.82 0.3651 0.0096

1.65 0.4378 0.0163

per surface separated at about 25_ chord downstream of the shock wave and never

reattached. Distinct periodicity in the computational results was observed and the

results corresponding to a minimum change in the flow variables between successive

iteration levels were taken to be the final solution. Figure 5.23 shows the comparison

between the computational and experimental surface-pressure coefficients. Excellent

agreement between computational and experimental pressure coefficients is observed

and the shock location is correctly predicted. The skin-friction distribution on the

upper surface is portrayed in Figure 5.24 which shows trailing-edge separation. The

predicted lift, drag and pitching moment coefficients are 0.4395, 0.0176 and -0.0606,

respectively, which are in close agreement with the corresponding experimental val-

ues of 0.4378, 0.0163 and -0.0537. The pressure contour plot and the Mach number

contour plots are shown in Figures 5.25 and 5.26 respectively.
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Figure 5.23: Integrated Technolog)" A 153W: surface-pressure coefficient at .'_I_c =

0.725. Re = 3.0 × 106, acornp = 1.65 o , aezp = 1.65 °
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Figure 5.24: Integrated Technology A 153W: skin-friction coefficient at Moo =
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Figure 5.25: Integrated Technology A 153W: pressure contours at ?,lot = 0.725,

Re = 3.0 × 106, Ctcomp = 1.65 °, ctexp = 1.65 °
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Figure 5.26: Integrated Technology A 153W: Mach number contours at ._,I_¢ =

0.725, Re = 3 _ 106 , acornp = 1.,o-. aezp = .,o
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CHAPTER 6. CONCLUDING REMARKS

A new nonequilibrium turbulencemodel hasbeendevelopedfor computation of

wall bounded two-dimensional turbulent flows. The model, which is patterned after

the Johnson-King model i121. is based on the turbulent kinetic energy equation and

available experimental results for both attached and separated flows. Performance of

this model was tested by solving the Reynolds time-averaged Navier-Stokes equations

for various flow conditions around three different airfoil shapes. No changes were made

in the model parameters while different test cases were being considered.

Based on the results obtai-ned, both the attached and the shock-induced sepa-

rated flow cases compare closely with the experimental data. One exception is the

NACA 0012 separated flow case, where the pressure on the lower surface is slightly

underpredicted; though not as much as the Johnson-King model !12!. It is felt that

this small difference is due to the modeled form of the turbulence diffusion term.

Further study on the diffusion term and the inner-layer turbulence velocity scale is

currently being performed to understand the phenomenon better. Finally, since un-

steadiness was observed for cases with large regions of separation, the model should

be tested further by incorporating it into other existing Navier-Stokes codes.
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APPENDIX A. TURBULENT DIFFUSION

The turbulent diffusion term is patterned after Johnson and King [12!. As a

starting point, the bulk convection hypothesis of Townsend [131, namely

ODs _ _-_(feV) (A.1)
Oy _y

is used. Here V is a lateral convection velocity representing the turbulent transport

by more energetic large eddies. Along the path of maximum gr ,

where the relationship -_/f¢ = a 1 has been applied. The approximate model for

the variation of V with y/8 suggested by Johnson and King [12] is utilized here to

obtain

t_ mentioned in the foregoing equation is the maximum lateral convection velocity

which is assumed to occur at y __ 0.7_. 1_ is expected to be proportional to the

maximum turbulent shear stress, i.e.,
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Io = C )1//2model(rmax

It is to be noted here that the additional restriction on t_ placed by Johnson and

King, namely

(dissipation)

has been dropped here. This is because it is believed here that in the case of equi-

librium turbulence, the diffusion term is balanced by the convection term in the

turbulent kinetic energy equation: not that the diffusion term is independently zero.

Thus equation A.2 with the aid of A.3 becomes

1/'2

( ODs ] __ Cmodelrmrmax ymax (A.4)

_--_--Y/m a1(0.76-ymax) ym
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APPENDIX B. NONEQUILIBRIUM EFFECTS IN THE INNER

LAYER

Based on the assumption that the Coles velocity profiles 13T describe turbulent

mean flows of attached and slightly separated boundary layers, it is possible to deduce

a relationship between the turbulence velocity scales in the inner and the outer regions

of such shear layers. Using Hinze's expression for the universal wake function, the

Coles velocity profiles in defect form is written as

Ue - fi _ cr [sign( o.)l-i { 1 - cos(Try)} - ln_] (B.1)
re

where

w

o" cf

1/2

= sign(rw)_e

Differentiating B.1 with respect to y one obtains,

Y]_y i- a _'l-I sin _" + (B.2)

Since the law of the wall delivers _¢y I _ I= o'Ue = constant, _rUe can be interpreted

as the turbulence velocity scale Vs i in the inner layer. The y location for the maximum
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(9l/

value of 9 _ , as observed from equation B.2, is 0.6463. With these identifications.

and replacing Off "Oy with x. equation B.2 may be rewritten as

)mazF (B.3)
t_ i = 1 + 1.82II

For equilibrium turbulent flow, (y i ,',' ])maz F is proportional to the turbulence

velocity scale _:So in the outer layer. Equation B.3 thus yields a relationship between

the inner and the outer turbulence velocity scales.

_(c°nstant)t's° ( B.4}
Ssi = 1 - 1.82II

It is now hypothesized that the above relationship holds for nonequihbrium tur-

bulence as well. Since ge/g can be interpreted as a nonequilibrium correction applied

to o.

_( constant )VSo,e ge / g

l/_i = 1 " 1.82II
(B.5)

Finally, writing II in terms of (y j ,z !)maz F with the aid of equation B.2 and

identifying this vorticity function with the equilibrium outer turbulence velocity scale,

one obtains

= l/:_i,eFrv__ (B.6)$i

with
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ge/g
Fc -

i - fl
(B.7)

fl =
ul.(pw/pe)l/2(rtv/ !rw )El--Try/ ]'rw _]

_Fmax
(B.8)

where $'si, e = O'Ue has been used.




